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we have

Theorem (Liiroth)
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Unirationality

X an n-dimensional variety over a field k

Definition X is called unirational if there exists
P" --» X

dominant and rational.

Equivalently, there exist inclusions of function fields

k C k(X) - k(tla"'>tn)'
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Curves

Geometric version of Liroth's theorem:

Theorem (Liiroth, version 2)

Let X be a smooth and proper curve over a field k. TFAE:

» X is unirational.
» X is birational to P,l(.

In fact, we then even have X = IP’}(.
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Surfaces

Zariski:

if char(k) = p > 0, then there exist unirational surfaces that are
not rational

Theorem (Zariski)

Let X be a smooth and proper surface over an algebraically closed
field k of positive characteristic.

TFAE:
» X is birational to IP’,Z(.

» X is separably unirational over k.
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Threefolds

Theorem ((Fano), Iskovskikh—Manin, Clemens—Griffiths,

Artin—Mumford)

There do exist smooth and projective 3-folds over C that are
> unirational, but

» not rational.
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coming back to surfaces:

Question When is a surface in positive characteristic unirational?



Necessary conditions for unirationality

Theorem (Shioda)

Let X be a unirational surface. Then,
p(X) = by(X),

where

p(X) = rankNS(X)
bz(X) = dier Hézt(X,Qg)
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Necessary conditions for unirationality

Definition A surface X is called (Artin—)supersingular if

H2. (X/W)

cris

is of slope 1.

Thus,
unirational = Shioda—supersingular

= (Artin—)supersingular



Converse?

The Tate—conjecture gives

(Artin—)supersingular = Shioda—supersingular
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K3 surfaces

Definition A K3 surface is a smooth projective surface X over a
field k such that

wx = Ox and bi(X) = 0.

Example A smooth projective quartic hypersurface
X, C P}

is a K3 surface.
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Tate—conjecture

Theorem (Nygaard, Nygaard—Ogus, Maulik, Charles,
Madapusi-Pera)

The Tate—conjecture holds for K3 surfaces in odd characteristic.

Corollary For a K3 surface X in odd characteristic,
X is Shioda—supersingular < X is Artin—supersingular.

Thus, for K3 surfaces, only one notion: supersingular.



Artin—Rudakov—Shafarevich—Shioda—conjecture

Conjecture (Artin, Rudakov—Shafarevich, Shioda)
For a K3 surface X

X is unirational < X is supersingular.
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Evidence

Theorem

The Artin—Rudakov—Shafarevich—Shioda conjecture holds for

» Shioda-supersingular K3 surfaces in characteristic 2.
(Rudakov—Shafarevich)

» Supersingular K3 surfaces with o9 < 6 in characteristic 3.
(Rudakov—Shafarevich)

» Supersingular K3 surfaces with g < 3 in characteristic 5.
(Pho—Shimada)

» Supersingular K3 surfaces with g9 < 2 in odd characteristic.
(Shioda)



Evidence

Corollary
For every odd prime p, there exists
» a supersingular K3 surface in characteristic p,

» which is unirational.
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Formal groups arising from algebraic varieties

X proper over k
Artin and Mazur studied functor

<D§</k : (Art/k) — (Abelian groups)

S ker (HL(X x4k S,Gm) = Hi,(X,Gp))

Example (formal Picard group)

If i =1, then L
q)}(/k = PiCX/k.
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Formal Brauer group

Fact (Artin—-Mazur)
Have tangent-obstruction theory for CD;(/k:

tangent space: Hi(X,0x)
obstruction space:  H'*1(X,Ox)

Corollary—Definition

For a K3 surface, <D§</k is pro-representable by a

1-dimensional formal group law E;X/k over k,
called the formal Brauer group.
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1-dimensional formal group laws

G = Spf k[[t]] a 1-dimensional formal group law over k,
k algebraically closed, char(k) =p > 0

multiplication 4 : G X G — G
is given by f(x,y) € k[[x,y]]

G is determined by its height h(G)
multiplication by p: G — G
is given by g(t) € k[[t]]

hG) = oo ifg(t) =0
T U h ifg(t) = tP" + higher order terms.
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Supersingular K3 surfaces

Fact

For a K3 surface X in odd characteristic,

X is supersingular & h(I/B\rX) = 00.

Reminder: want to prove

X supersingular K3 = X is unirational.
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Families of torsors

X — P! an elliptic K3 surface with a section.
X' — P! WeierstraB model
A C X identity component of Néron-model.

Want to classify families of A-torsors

X DO A — A

{ { {

Pl = P! — PlxS
where

» S is spectrum of a local, complete, and Noetherian k-algebra
with residue field k.

» RHS is Cartesian.
> together with a degree N-multisection of A — P! x S.
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Families of torsors

classified by Abelian group

ker (Hélt(ﬁb1 x S, A) = HL (P, A)> (V]

Grothendieck—Leray spectral sequence for X’ fypt

By = Hi(X', RIEGp) = HF(X', Gp)
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Families of torsors

Proposition
X — P elliptic K3 with section.

S spectrum of local, complete, and Noetherian k-algebra with
residue field k.

Then, families of A-torsors over S s.th. there exists degree-IN
multisection are classified by

Brx(S) [N].
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Families of torsors

Corollary
Non-trivial families of A-torsors over S = Spec k[[t]]

can and do exist if and only if
> h(/B\rX) = 00, that is, X is supersingular, and
» p divides N.
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Families of torsors

Theorem

X — P! supersingular K3 with elliptic fibration with section.
Then, there exists a smooth family of supersingular K3 surfaces

X — X

1 i
Speck — S = Spec k[[t]]

> have
0 — Pic(Xy) — Pic(X) = Z/pZ — 0

In particular: non-trivial moduli.

> have inseparable isogenies
Xﬁ -—+ X XM --» Xﬁ

In particular: X unirational < A% unirational.
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Families of torsors

upshot
X — P! supersingular K3 with elliptic fibration with section.

Then, there exists a non-trivial deformation of X
X — Spec k][[t]],

such that
X unirational & Az unirational
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Artin invariant

Proposition—Definition (Artin)
Let X be a supersingular K3 surface in odd characteristic.

Then,
disc NS(X) = —p>o°

for some integer og
1< go S 107

called the Artin—invariant.
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Artin invariant

Theorem (Rudakov—Shafarevich)
Let X be a supersingular K3 surface in odd characteristic.

Then, NS (X) is determined up to isometry by oyg.

Definition

This lattice is called the supersingular K3 lattice of Artin
invariant oyg.
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Artin invariant

Proposition
Let X be a supersingular K3 surface in odd characteristic.

» There exists an elliptic fibration X — P!, possibly without
section.

> If og < 9, then there exists an elliptic fibration X — P! with
section.
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Supersingular K3 crystals

X supersingular K3 surface over k

H = Hgs(X/W)
» free W(k)-module of rank 22
» Frobenius p: H - H

» Poincaré duality induces perfect pairing H x H — W(k)
» Tate-module

Th ={xeH|x=p(x)} CH
is free Z,-module of rank 22 with

200

disc Ty = —p
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Moduli of supersingular K3 crystals

Theorem (Ogus)

Let N be a supersingular K3 lattice with disc N = —p2°°.

> There exists a moduli space My for supersingular K3 crystals
(H, ¢, (—,—)) with N C Ty.
» My is irreducible, smooth and projective over F,.
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Ogus’ period map

N a supersingular K3 lattice.

Sy moduli space of supersingular K3 surfaces X
with N C NS(X).

My moduli space of supersingular K3 crystals H
with N C Ty.

Ogus’ period map
TN - 5/\/ — M/\/
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Ogus’ crystalline Torelli theorem

Theorem (Ogus)

In characteristic p > 5, there exists a period map

7TN:SN—>./\/lN.

» 7y is étale, but not of finite type

» for X, Y supersingular K3 surfaces

X g Y ~ CI’lS(X/W) CI’lS(Y/W)'

(RHS: isomorphism of supersingular K3 crystals)
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Families of torsors, |1

Theorem

N, Ny supersingular K3 lattices in odd characteristic with
Uo(N+) = 0'0(/V) + 1.
Then, there exists a P!-bundle structure

MN+ — MN.

Corollary

My is an iterated P1-bundle over Fo.
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Conclusion

In odd characteristic,

» Given supersingular K3 X with g < 9, there exists

deformation
X — Spec k|[[t]]

oo(Xy) = oo(X) + 1.
X and A7 are related by purely inseparable isogeny.
» These deformations induce a P!-bundle structure

./\/l/\/+ — ./\/lN.

» There does exist a unirational K3 surface (Shioda).
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Conclusion

Theorem

Let X, Y be supersingular K3 surfaces in characteristic p > 5.
Then, there exist purely inseparably isogenies

X -—+Y -—» X

Theorem

Supersingular K3 surfaces in characteristic p > 5 are unirational.



