Supersingular K3 Surfaces are Unirational

Christian Liedtke (Technical University Munich)

August 7, 2014 Seoul ICM 2014 Satellite Conference, Daejeon

Lüroth's theorem

Given

 \blacktriangleright a field k a field,

Lüroth's theorem

Given

- a field k a field, and
- a field extension

$$k \subset L \subset k(t)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

with tr.deg. $_{k}L = 1$

Lüroth's theorem

Given

- a field k a field, and
- a field extension

$$k \subset L \subset k(t)$$

with tr.deg._kL = 1

we have

Theorem (Lüroth)

 $L \cong k(u)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Unirationality

X an *n*-dimensional variety over a field k

Unirationality

X an *n*-dimensional variety over a field k

Definition X is called **unirational** if there exists

$$\mathbb{P}^n \dashrightarrow X$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

dominant and rational.

Unirationality

X an *n*-dimensional variety over a field k

Definition X is called **unirational** if there exists

 $\mathbb{P}^n \dashrightarrow X$

dominant and rational.

Equivalently, there exist inclusions of function fields

$$k \subseteq k(X) \subseteq k(t_1,...,t_n).$$

Curves

Geometric version of Lüroth's theorem:

Curves

Geometric version of Lüroth's theorem:

Theorem (Lüroth, version 2)

Let X be a smooth and proper curve over a field k. TFAE:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

X is unirational.

• X is birational to \mathbb{P}^1_k .

Curves

Geometric version of Lüroth's theorem:

Theorem (Lüroth, version 2)

Let X be a smooth and proper curve over a field k. TFAE:

X is unirational.

• X is birational to \mathbb{P}^1_k .

In fact, we then even have $X \cong \mathbb{P}^1_k$.

Theorem (Castelnuovo)

Let X be a smooth and proper surface over an algebraically closed field k

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Theorem (Castelnuovo)

Let X be a smooth and proper surface over an algebraically closed field k of characteristic zero.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

TFAE:

- X is unirational.
- X is birational to \mathbb{P}^2_k .

Theorem (Castelnuovo)

Let X be a smooth and proper surface over an algebraically closed field k of characteristic zero.

TFAE:

- X is unirational.
- X is birational to \mathbb{P}^2_k .

Note: non-trivial birational geometry in dimension ≥ 2 :

Theorem (Castelnuovo)

Let X be a smooth and proper surface over an algebraically closed field k of characteristic zero.

TFAE:

- X is unirational.
- X is birational to \mathbb{P}^2_k .

Note: non-trivial birational geometry in dimension ≥ 2 :

$$\mathbb{P}^2$$
 and $\mathbb{P}^1 imes \mathbb{P}^1$

are birational, but not isomorphic.

Theorem (Castelnuovo)

Let X be a smooth and proper surface over an algebraically closed field k of characteristic zero.

TFAE:

- X is unirational.
- X is birational to \mathbb{P}^2_k .

Note: non-trivial birational geometry in dimension ≥ 2 :

$$\mathbb{P}^2$$
 and $\mathbb{P}^1 imes \mathbb{P}^1$

are birational, but not isomorphic.

Zariski:

if char(k) = p > 0, then there exist unirational surfaces that are **not** rational

Zariski:

if char(k) = p > 0, then there exist unirational surfaces that are **not** rational

Theorem (Zariski)

Let X be a smooth and proper surface over an algebraically closed field k

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Zariski:

if char(k) = p > 0, then there exist unirational surfaces that are **not** rational

Theorem (Zariski)

Let X be a smooth and proper surface over an algebraically closed field k of positive characteristic.

TFAE:

- X is birational to \mathbb{P}^2_k .
- X is **separably** unirational over k.

Threefolds

Theorem ((Fano), Iskovskikh–Manin, Clemens–Griffiths, Artin–Mumford)

There do exist smooth and projective 3-folds over $\ensuremath{\mathbb{C}}$ that are

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Threefolds

Theorem ((Fano), Iskovskikh–Manin, Clemens–Griffiths, Artin–Mumford)

There do exist smooth and projective 3-folds over $\ensuremath{\mathbb{C}}$ that are

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

- unirational, but
- not rational.

Unirational surfaces

coming back to surfaces:

Unirational surfaces

coming back to surfaces:

Question When is a surface in positive characteristic unirational?

(ロ)、(型)、(E)、(E)、 E) の(の)

Theorem (Shioda)

Let X be a unirational surface. Then,

$$\rho(X) = b_2(X),$$

where

$$\begin{array}{lll} \rho(X) &=& \mathrm{rank}\,\mathrm{NS}(X)\\ b_2(X) &=& \dim_{\mathbb{Q}_\ell}H^2_{\mathrm{\acute{e}t}}(X,\mathbb{Q}_\ell) \end{array}$$

(ロ)、(型)、(E)、(E)、 E) の(の)

Definition A surface X is called **Shioda–supersingular** if

$$\rho(X) = b_2(X).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Definition A surface X is called **Shioda–supersingular** if

$$\rho(X) = b_2(X).$$

Thus,

unirational \Rightarrow Shioda-supersingular

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Proposition

Let X be a Shioda–supersingular surface. Then, the F-crystal

 $H_{
m cris}^2(X/W)$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

is of slope 1

Definition A surface X is called (Artin–)supersingular if

 $H_{
m cris}^2(X/W)$

is of slope 1.

Definition A surface X is called (Artin–)supersingular if

 $H_{
m cris}^2(X/W)$

is of slope 1.

Thus,

$$\begin{array}{rcl} \mbox{unirational} & \Rightarrow & \mbox{Shioda-supersingular} \\ & \Rightarrow & (\mbox{Artin-})\mbox{supersingular} \end{array}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The Tate-conjecture gives

(Artin–)supersingular \Rightarrow Shioda–supersingular

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

K3 surfaces

Definition A **K3 surface** is a smooth projective surface X over a field k such that

$$\omega_X \cong \mathcal{O}_X$$
 and $b_1(X) = 0$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

K3 surfaces

Definition A **K3 surface** is a smooth projective surface X over a field k such that

$$\omega_X \cong \mathcal{O}_X$$
 and $b_1(X) = 0$.

Example A smooth projective quartic hypersurface

$$X_4 \subset \mathbb{P}^3_k$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

is a K3 surface.

Tate-conjecture

Theorem (Nygaard, Nygaard–Ogus, Maulik, Charles, Madapusi-Pera)

The Tate-conjecture holds for K3 surfaces in odd characteristic.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Tate-conjecture

Theorem (Nygaard, Nygaard–Ogus, Maulik, Charles, Madapusi-Pera)

The Tate-conjecture holds for K3 surfaces in odd characteristic.

Corollary For a K3 surface X in odd characteristic,

X is Shioda–supersingular \Leftrightarrow X is Artin–supersingular.

Tate-conjecture

Theorem (Nygaard, Nygaard–Ogus, Maulik, Charles, Madapusi-Pera)

The Tate-conjecture holds for K3 surfaces in odd characteristic.

Corollary For a K3 surface X in odd characteristic,

X is Shioda–supersingular \Leftrightarrow X is Artin–supersingular.

Thus, for K3 surfaces, only one notion: supersingular.

Artin–Rudakov–Shafarevich–Shioda–conjecture

Conjecture (Artin, Rudakov–Shafarevich, Shioda) For a K3 surface *X*

X is unirational \Leftrightarrow X is supersingular.

Evidence

Theorem

The Artin-Rudakov-Shafarevich-Shioda conjecture holds for

- Shioda-supersingular K3 surfaces in characteristic 2. (Rudakov–Shafarevich)
- Supersingular K3 surfaces with σ₀ ≤ 6 in characteristic 3. (Rudakov–Shafarevich)

Evidence

Theorem

The Artin-Rudakov-Shafarevich-Shioda conjecture holds for

- Shioda-supersingular K3 surfaces in characteristic 2. (Rudakov–Shafarevich)
- Supersingular K3 surfaces with σ₀ ≤ 6 in characteristic 3. (Rudakov–Shafarevich)
- Supersingular K3 surfaces with σ₀ ≤ 3 in characteristic 5. (Pho–Shimada)

Evidence

Theorem

The Artin-Rudakov-Shafarevich-Shioda conjecture holds for

- Shioda-supersingular K3 surfaces in characteristic 2. (Rudakov–Shafarevich)
- Supersingular K3 surfaces with σ₀ ≤ 6 in characteristic 3. (Rudakov–Shafarevich)
- Supersingular K3 surfaces with σ₀ ≤ 3 in characteristic 5. (Pho–Shimada)
- Supersingular K3 surfaces with σ₀ ≤ 2 in odd characteristic. (Shioda)

Evidence

Corollary

For every odd prime p, there exists

► a supersingular K3 surface in characteristic *p*,

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

which is unirational.

Formal groups arising from algebraic varieties

X proper over k

Artin and Mazur studied functor

$$\begin{array}{rcl} \Phi^{i}_{X/k} & : & (\operatorname{Art}/k) & \to & (\operatorname{Abelian\ groups}) \\ & S & \mapsto & \ker \left(H^{i}_{\operatorname{\acute{e}t}}(X \times_{k} S, \mathbb{G}_{m}) \to H^{i}_{\operatorname{\acute{e}t}}(X, \mathbb{G}_{m}) \right) \end{array}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Formal groups arising from algebraic varieties

X proper over k

Artin and Mazur studied functor

$$egin{array}{rcl} \Phi^i_{X/k} & : & (\operatorname{Art}/k) &
ightarrow & (\operatorname{Abelian \ groups}) \ & S & \mapsto & \ker \left(H^i_{\operatorname{\acute{e}t}}(X imes_k S, \mathbb{G}_m)
ightarrow H^i_{\operatorname{\acute{e}t}}(X, \mathbb{G}_m)
ight) \end{array}$$

Example (formal Picard group)

If i = 1, then

$$\Phi^1_{X/k} \cong \widehat{\operatorname{Pic}}_{X/k}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Formal Brauer group

Fact (Artin–Mazur)

Have tangent-obstruction theory for $\Phi^i_{X/k}$:

tangent space: $H^i(X, \mathcal{O}_X)$ obstruction space: $H^{i+1}(X, \mathcal{O}_X)$

Formal Brauer group

Fact (Artin–Mazur)

Have tangent-obstruction theory for $\Phi^i_{X/k}$:

tangent space: $H^i(X, \mathcal{O}_X)$ obstruction space: $H^{i+1}(X, \mathcal{O}_X)$

Corollary–Definition

For a K3 surface, $\Phi^2_{X/k}$ is pro-representable by a 1-dimensional formal group law $\widehat{Br}_{X/k}$ over k,

Formal Brauer group

Fact (Artin–Mazur)

Have tangent-obstruction theory for $\Phi^i_{X/k}$:

tangent space: $H^i(X, \mathcal{O}_X)$ obstruction space: $H^{i+1}(X, \mathcal{O}_X)$

Corollary–Definition

For a K3 surface, $\Phi^2_{X/k}$ is pro-representable by a 1-dimensional formal group law $\widehat{Br}_{X/k}$ over k, called the formal Brauer group.

 $G = \operatorname{Spf} k[[t]]$ a 1-dimensional formal group law over k, k algebraically closed, $\operatorname{char}(k) = p > 0$

 $G = \operatorname{Spf} k[[t]]$ a 1-dimensional formal group law over k, k algebraically closed, $\operatorname{char}(k) = p > 0$

multiplication $\mu: G \times G \rightarrow G$ is given by $f(x, y) \in k[[x, y]]$

 $G = \operatorname{Spf} k[[t]]$ a 1-dimensional formal group law over k, k algebraically closed, $\operatorname{char}(k) = p > 0$

multiplication
$$\mu: G \times G \rightarrow G$$

is given by $f(x, y) \in k[[x, y]]$

G is determined by its **height** h(G)

 $G = \operatorname{Spf} k[[t]]$ a 1-dimensional formal group law over k, k algebraically closed, $\operatorname{char}(k) = p > 0$

multiplication
$$\mu : G \times G \rightarrow G$$

is given by $f(x, y) \in k[[x, y]]$

G is determined by its **height** h(G)multiplication by $p: G \rightarrow G$ is given by $g(t) \in k[[t]]$

 $G = \operatorname{Spf} k[[t]]$ a 1-dimensional formal group law over k, k algebraically closed, $\operatorname{char}(k) = p > 0$

multiplication
$$\mu: G \times G \rightarrow G$$

is given by $f(x, y) \in k[[x, y]]$

G is determined by its **height** h(G)multiplication by $p: G \rightarrow G$ is given by $g(t) \in k[[t]]$

$$h(G) := \begin{cases} \infty & \text{if } g(t) = 0\\ h & \text{if } g(t) = t^{p^h} + \text{higher order terms.} \end{cases}$$

Supersingular K3 surfaces

Fact

For a K3 surface X in odd characteristic,

X is supersingular $\Leftrightarrow h(\widehat{\operatorname{Br}}_X) = \infty.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Supersingular K3 surfaces

Fact

For a K3 surface X in odd characteristic,

X is supersingular $\Leftrightarrow h(\widehat{\operatorname{Br}}_X) = \infty.$

Reminder: want to prove

X supersingular K3 \Rightarrow X is unirational.

 $X o \mathbb{P}^1$ an elliptic K3 surface with a section.

 $X o \mathbb{P}^1$ an elliptic K3 surface with a section. $X' o \mathbb{P}^1$ Weierstraß model

$$\begin{split} X &\to \mathbb{P}^1 \text{ an elliptic K3 surface with a section.} \\ X' &\to \mathbb{P}^1 \text{ Weierstraß model} \\ A &\subseteq X \text{ identity component of Néron-model.} \end{split}$$

(ロ)、(型)、(E)、(E)、 E) の(の)

 $X \to \mathbb{P}^1$ an elliptic K3 surface with a section. $X' \to \mathbb{P}^1$ Weierstraß model $A \subseteq X$ identity component of Néron-model.

Want to classify families of A-torsors

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

where

 $X \to \mathbb{P}^1$ an elliptic K3 surface with a section. $X' \to \mathbb{P}^1$ Weierstraß model $A \subseteq X$ identity component of Néron-model.

Want to classify families of A-torsors

where

► S is spectrum of a local, complete, and Noetherian k-algebra with residue field k.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $X \to \mathbb{P}^1$ an elliptic K3 surface with a section. $X' \to \mathbb{P}^1$ Weierstraß model $A \subseteq X$ identity component of Néron-model.

Want to classify families of A-torsors

where

► S is spectrum of a local, complete, and Noetherian k-algebra with residue field k.

RHS is Cartesian.

 $X \to \mathbb{P}^1$ an elliptic K3 surface with a section. $X' \to \mathbb{P}^1$ Weierstraß model $A \subseteq X$ identity component of Néron-model.

Want to classify families of A-torsors

where

► S is spectrum of a local, complete, and Noetherian k-algebra with residue field k.

- RHS is Cartesian.
- together with a degree *N*-multisection of $\mathcal{A} \to \mathbb{P}^1 \times S$.

classified by Abelian group

$$\ker \left(H^{1}_{\text{\acute{e}t}}(\mathbb{P}^{1} \times S, A) \xrightarrow{\text{res}} H^{1}_{\text{\acute{e}t}}(\mathbb{P}^{1}, A) \right) [N]$$

<□ > < @ > < E > < E > E のQ @

classified by Abelian group

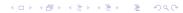
$$\ker \left(H^{1}_{\text{\acute{e}t}}(\mathbb{P}^{1} \times S, A) \xrightarrow{\operatorname{res}} H^{1}_{\text{\acute{e}t}}(\mathbb{P}^{1}, A) \right) [N]$$

Grothendieck–Leray spectral sequence for $X' \stackrel{f}{\longrightarrow} \mathbb{P}^1$

$$E_2^{i,j} := H^i_{\text{\'et}}(X', R^j f_* \mathbb{G}_m) \Rightarrow H^{i+j}_{\text{\'et}}(X', \mathbb{G}_m)$$

Proposition

 $X \to \mathbb{P}^1$ elliptic K3 with section.



Proposition

- $X \to \mathbb{P}^1$ elliptic K3 with section.
- S spectrum of local, complete, and Noetherian k-algebra with residue field k.

(ロ)、(型)、(E)、(E)、 E) の(の)

Proposition

- $X \to \mathbb{P}^1$ elliptic K3 with section.
- S spectrum of local, complete, and Noetherian k-algebra with residue field k.
- Then, families of A-torsors over S s.th. there exists degree-N multisection are classified by

 $\widehat{\operatorname{Br}}_X(S)[N].$

Corollary

Non-trivial families of A-torsors over S = Spec k[[t]]

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

can and do exist if and only if

•
$$h(\widehat{\operatorname{Br}}_X) = \infty$$
,

Corollary

Non-trivial families of A-torsors over S = Spec k[[t]]

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

can and do exist if and only if

• $h(\widehat{\operatorname{Br}}_X) = \infty$, that is, X is supersingular,

Corollary

Non-trivial families of A-torsors over S = Spec k[[t]]

can and do exist if and only if

• $h(\widehat{\operatorname{Br}}_X) = \infty$, that is, X is supersingular, and

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

▶ *p* divides *N*.

Theorem

 $X \to \mathbb{P}^1$ supersingular K3 with elliptic fibration with section. Then, there exists a smooth family of supersingular K3 surfaces

$$egin{array}{cccc} X &
ightarrow & \mathcal{X} \ \downarrow & & \downarrow \ \mathrm{Spec} \; k \;
ightarrow \; & \mathcal{S} \; = \; \mathrm{Spec} \; k[[t]] \end{array}$$

$$0 \rightarrow \operatorname{Pic}(\mathcal{X}_{\overline{\eta}}) \rightarrow \operatorname{Pic}(X) \rightarrow \mathbb{Z}/p\mathbb{Z} \rightarrow 0$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Theorem

 $X \to \mathbb{P}^1$ supersingular K3 with elliptic fibration with section. Then, there exists a smooth family of supersingular K3 surfaces

$$egin{array}{cccc} X &
ightarrow & \mathcal{X} \ \downarrow & & \downarrow \ \mathrm{Spec} \; k \;
ightarrow \; & \mathcal{S} \; = \; \mathrm{Spec} \; k[[t]] \end{array}$$

have

$$0 \rightarrow \operatorname{Pic}(\mathcal{X}_{\overline{\eta}}) \rightarrow \operatorname{Pic}(X) \rightarrow \mathbb{Z}/p\mathbb{Z} \rightarrow 0$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

In particular: non-trivial moduli.

Theorem

 $X \to \mathbb{P}^1$ supersingular K3 with elliptic fibration with section. Then, there exists a smooth family of supersingular K3 surfaces

$$egin{array}{cccc} X &
ightarrow & \mathcal{X} \ \downarrow & & \downarrow \ \mathrm{Spec} \; k \;
ightarrow \; & \mathcal{S} \; = \; \mathrm{Spec} \; k[[t]] \end{array}$$

have

$$0 \rightarrow \operatorname{Pic}(\mathcal{X}_{\overline{\eta}}) \rightarrow \operatorname{Pic}(X) \rightarrow \mathbb{Z}/p\mathbb{Z} \rightarrow 0$$

In particular: non-trivial moduli.

have inseparable isogenies

$$\mathcal{X}_{\overline{\eta}} \dashrightarrow X \times_k \overline{\eta} \dashrightarrow \mathcal{X}_{\overline{\eta}}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem

 $X \to \mathbb{P}^1$ supersingular K3 with elliptic fibration with section. Then, there exists a smooth family of supersingular K3 surfaces

$$egin{array}{cccc} X &
ightarrow & \mathcal{X} \ \downarrow & & \downarrow \ \mathrm{Spec} \; k \;
ightarrow \; & \mathcal{S} \; = \; \mathrm{Spec} \; k[[t]] \end{array}$$

have

$$0 \rightarrow \operatorname{Pic}(\mathcal{X}_{\overline{\eta}}) \rightarrow \operatorname{Pic}(X) \rightarrow \mathbb{Z}/p\mathbb{Z} \rightarrow 0$$

In particular: non-trivial moduli.

have inseparable isogenies

$$\mathcal{X}_{\overline{\eta}} \dashrightarrow X \times_k \overline{\eta} \dashrightarrow \mathcal{X}_{\overline{\eta}}$$

In particular: X unirational $\Leftrightarrow \mathcal{X}_{\overline{\eta}}$ unirational.

upshot

 $X \to \mathbb{P}^1$ supersingular K3 with elliptic fibration with section.

upshot

 $X \to \mathbb{P}^1$ supersingular K3 with elliptic fibration with section. Then, there exists a non-trivial deformation of X

$$\mathcal{X} \to \operatorname{Spec} k[[t]],$$

(ロ)、(型)、(E)、(E)、 E) の(の)

Families of torsors

upshot

 $X \to \mathbb{P}^1$ supersingular K3 with elliptic fibration with section. Then, there exists a non-trivial deformation of X

 $\mathcal{X} \to \operatorname{Spec} k[[t]],$

such that

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Proposition-Definition (Artin)

Let X be a supersingular K3 surface in odd characteristic.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Proposition-Definition (Artin)

Let X be a supersingular K3 surface in odd characteristic. Then,

$$\operatorname{disc} \operatorname{NS}(X) = -p^{2\sigma_0}$$

Proposition-Definition (Artin)

Let X be a supersingular K3 surface in odd characteristic. Then,

$$\operatorname{disc} \operatorname{NS}(X) = -p^{2\sigma_0}$$

for some integer σ_0

$$1 \leq \sigma_0 \leq 10,$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Proposition-Definition (Artin)

Let X be a supersingular K3 surface in odd characteristic. Then,

$$\operatorname{disc} \operatorname{NS}(X) = -p^{2\sigma_0}$$

for some integer σ_0

 $1 \leq \sigma_0 \leq 10,$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

called the Artin-invariant.

Theorem (Rudakov–Shafarevich)

Let X be a supersingular K3 surface in odd characteristic.

Theorem (Rudakov–Shafarevich)

Let X be a supersingular K3 surface in odd characteristic.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Then, NS(X) is determined up to isometry by σ_0 .

Theorem (Rudakov–Shafarevich)

Let X be a supersingular K3 surface in odd characteristic. Then, NS(X) is determined up to isometry by σ_0 .

Definition

This lattice is called the **supersingular K3 lattice** of Artin invariant σ_0 .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Proposition

Let X be a supersingular K3 surface in odd characteristic.

► There exists an elliptic fibration X → P¹, possibly without section.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Proposition

Let X be a supersingular K3 surface in odd characteristic.

- ► There exists an elliptic fibration X → P¹, possibly without section.
- If $\sigma_0 \leq 9$, then there exists an elliptic fibration $X \to \mathbb{P}^1$ with section.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

X supersingular K3 surface over k

X supersingular K3 surface over k

 $H:=H^2_{\rm cris}(X/W)$

• free W(k)-module of rank 22

X supersingular K3 surface over k

 $H:=H^2_{\rm cris}(X/W)$

free W(k)-module of rank 22

▶ Frobenius $\varphi : H \to H$

X supersingular K3 surface over k

 $H:=H^2_{\rm cris}(X/W)$

- free W(k)-module of rank 22
- Frobenius $\varphi: H \to H$
- Poincaré duality induces perfect pairing $H \times H \rightarrow W(k)$

X supersingular K3 surface over k

 $H:=H^2_{\rm cris}(X/W)$

- free W(k)-module of rank 22
- Frobenius $\varphi: H \to H$
- ▶ Poincaré duality induces perfect pairing $H \times H \rightarrow W(k)$
- Tate–module

$$T_H := \{x \in H \mid x = \varphi(x)\} \subset H$$

X supersingular K3 surface over k

 $H:=H^2_{\rm cris}(X/W)$

- free W(k)-module of rank 22
- Frobenius $\varphi: H \to H$
- Poincaré duality induces perfect pairing $H \times H \rightarrow W(k)$

Tate–module

$$T_H := \{x \in H \,|\, x = \varphi(x)\} \subset H$$

is free \mathbb{Z}_p -module of rank 22 with

disc
$$T_H = -p^{2\sigma_0}$$
.

Moduli of supersingular K3 crystals

Theorem (Ogus)

Let *N* be a supersingular K3 lattice with disc $N = -p^{2\sigma_0}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Moduli of supersingular K3 crystals

Theorem (Ogus)

Let *N* be a supersingular K3 lattice with disc $N = -p^{2\sigma_0}$.

• There exists a moduli space \mathcal{M}_N for supersingular K3 crystals $(H, \varphi, \langle -, - \rangle)$ with $N \subset T_H$.

Moduli of supersingular K3 crystals

Theorem (Ogus)

Let *N* be a supersingular K3 lattice with disc $N = -p^{2\sigma_0}$.

• There exists a moduli space \mathcal{M}_N for supersingular K3 crystals $(H, \varphi, \langle -, - \rangle)$ with $N \subset T_H$.

• \mathcal{M}_N is irreducible, smooth and projective over \mathbb{F}_p .

Ogus' period map

N a supersingular K3 lattice.

Ogus' period map

N a supersingular K3 lattice.

- \mathcal{S}_N moduli space of supersingular K3 surfaces X with $N \subseteq NS(X)$.
- \mathcal{M}_N moduli space of supersingular K3 crystals H with $N \subset T_H$.

Ogus' period map

N a supersingular K3 lattice.

$$\mathcal{S}_N$$
 moduli space of supersingular K3 surfaces X with $N \subseteq NS(X)$.

 \mathcal{M}_N moduli space of supersingular K3 crystals H with $N \subset T_H$.

Ogus' period map

$$\pi_N : S_N \to \mathcal{M}_N$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Ogus' crystalline Torelli theorem

Theorem (Ogus)

In characteristic $p \ge 5$, there exists a period map

$$\pi_N : \mathcal{S}_N \to \mathcal{M}_N.$$

Ogus' crystalline Torelli theorem

Theorem (Ogus)

In characteristic $p \ge 5$, there exists a period map

$$\pi_N : \mathcal{S}_N \to \mathcal{M}_N.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• π_N is étale, but not of finite type

Ogus' crystalline Torelli theorem

Theorem (Ogus)

In characteristic $p \ge 5$, there exists a period map

$$\pi_N: \mathcal{S}_N \to \mathcal{M}_N.$$

- π_N is étale, but not of finite type
- ▶ for *X*, *Y* supersingular K3 surfaces

$$X \cong Y \quad \Leftrightarrow \quad H^2_{\operatorname{cris}}(X/W) \cong H^2_{\operatorname{cris}}(Y/W).$$

(RHS: isomorphism of supersingular K3 crystals)

Families of torsors, II

Theorem

 N, N_+ supersingular K3 lattices in odd characteristic with

$$\sigma_0(N_+) = \sigma_0(N) + 1.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Families of torsors, II

Theorem

 N, N_+ supersingular K3 lattices in odd characteristic with

$$\sigma_0(N_+) = \sigma_0(N) + 1.$$

Then, there exists a \mathbb{P}^1 -bundle structure

$$\mathcal{M}_{N_+} \rightarrow \mathcal{M}_N.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Families of torsors, II

Theorem

 N, N_+ supersingular K3 lattices in odd characteristic with

$$\sigma_0(N_+) = \sigma_0(N) + 1.$$

Then, there exists a \mathbb{P}^1 -bundle structure

$$\mathcal{M}_{N_+} \to \mathcal{M}_N.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Corollary

 \mathcal{M}_N is an iterated \mathbb{P}^1 -bundle over \mathbb{F}_{p^2} .

In odd characteristic,

► Given supersingular K3 X with σ₀ ≤ 9, there exists deformation

 $\mathcal{X} \to \operatorname{Spec} k[[t]]$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

In odd characteristic,

► Given supersingular K3 X with σ₀ ≤ 9, there exists deformation

 $\mathcal{X} \to \operatorname{Spec} k[[t]]$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $\sigma_0(\mathcal{X}_{\overline{\eta}}) = \sigma_0(X) + 1.$

In odd characteristic,

► Given supersingular K3 X with σ₀ ≤ 9, there exists deformation

$$\mathcal{X} \to \operatorname{Spec} k[[t]]$$

 $\sigma_0(\mathcal{X}_{\overline{\eta}}) = \sigma_0(X) + 1.$ X and $\mathcal{X}_{\overline{\eta}}$ are related by purely inseparable isogeny.

In odd characteristic,

► Given supersingular K3 X with σ₀ ≤ 9, there exists deformation

$$\mathcal{X} \to \operatorname{Spec} k[[t]]$$

 $\sigma_0(\mathcal{X}_{\overline{\eta}}) = \sigma_0(X) + 1.$

X and $\mathcal{X}_{\overline{\eta}}$ are related by purely inseparable isogeny.

• These deformations induce a \mathbb{P}^1 -bundle structure

$$\mathcal{M}_{N_+} \rightarrow \mathcal{M}_N.$$

In odd characteristic,

► Given supersingular K3 X with σ₀ ≤ 9, there exists deformation

$$\mathcal{X} \to \operatorname{Spec} k[[t]]$$

 $\sigma_0(\mathcal{X}_{\overline{\eta}}) = \sigma_0(X) + 1.$ X and $\mathcal{X}_{\overline{\eta}}$ are related by purely inseparable isogeny.

• These deformations induce a \mathbb{P}^1 -bundle structure

$$\mathcal{M}_{N_+} \rightarrow \mathcal{M}_N.$$

There does exist a unirational K3 surface (Shioda).

Theorem

Let X, Y be supersingular K3 surfaces in characteristic $p \ge 5$. Then, there exist purely inseparably isogenies

$$X \dashrightarrow Y \dashrightarrow X$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Theorem

Let X, Y be supersingular K3 surfaces in characteristic $p \ge 5$. Then, there exist purely inseparably isogenies

$$X \dashrightarrow Y \dashrightarrow X$$

Theorem

Supersingular K3 surfaces in characteristic $p \ge 5$ are unirational.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ