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Lüroth’s theorem
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with tr.deg.kL = 1

we have
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X an n-dimensional variety over a field k

Definition X is called unirational if there exists
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Equivalently, there exist inclusions of function fields

k ⊆ k(X ) ⊆ k(t1, ..., tn).
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Curves

Geometric version of Lüroth’s theorem:

Theorem (Lüroth, version 2)

Let X be a smooth and proper curve over a field k. TFAE:

I X is unirational.

I X is birational to P1
k .

In fact, we then even have X ∼= P1
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of characteristic zero.
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Note: non-trivial birational geometry in dimension ≥ 2:

P2 and P1 × P1
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Zariski:

if char(k) = p > 0, then there exist unirational surfaces that are
not rational

Theorem (Zariski)

Let X be a smooth and proper surface over an algebraically closed
field k of positive characteristic.

TFAE:

I X is birational to P2
k .

I X is separably unirational over k.
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Theorem ((Fano), Iskovskikh–Manin, Clemens–Griffiths,
Artin–Mumford)

There do exist smooth and projective 3-folds over C that are

I unirational, but

I not rational.
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Necessary conditions for unirationality

Theorem (Shioda)

Let X be a unirational surface. Then,

ρ(X ) = b2(X ),

where
ρ(X ) = rankNS(X )
b2(X ) = dimQ`

H2
ét(X ,Q`)
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Proposition

Let X be a Shioda–supersingular surface. Then, the F -crystal

H2
cris(X/W )

is of slope 1
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Converse?

The Tate–conjecture gives

(Artin–)supersingular ⇒ Shioda–supersingular



K3 surfaces

Definition A K3 surface is a smooth projective surface X over a
field k such that

ωX
∼= OX and b1(X ) = 0 .

Example A smooth projective quartic hypersurface

X4 ⊂ P3
k

is a K3 surface.



K3 surfaces

Definition A K3 surface is a smooth projective surface X over a
field k such that

ωX
∼= OX and b1(X ) = 0 .

Example A smooth projective quartic hypersurface

X4 ⊂ P3
k

is a K3 surface.



Tate–conjecture

Theorem (Nygaard, Nygaard–Ogus, Maulik, Charles,
Madapusi-Pera)

The Tate–conjecture holds for K3 surfaces in odd characteristic.

Corollary For a K3 surface X in odd characteristic,

X is Shioda–supersingular ⇔ X is Artin–supersingular.

Thus, for K3 surfaces, only one notion: supersingular.
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Artin–Rudakov–Shafarevich–Shioda–conjecture

Conjecture (Artin, Rudakov–Shafarevich, Shioda)

For a K3 surface X

X is unirational ⇔ X is supersingular.



Evidence

Theorem

The Artin–Rudakov–Shafarevich–Shioda conjecture holds for

I Shioda-supersingular K3 surfaces in characteristic 2.
(Rudakov–Shafarevich)

I Supersingular K3 surfaces with σ0 ≤ 6 in characteristic 3.
(Rudakov–Shafarevich)

I Supersingular K3 surfaces with σ0 ≤ 3 in characteristic 5.
(Pho–Shimada)

I Supersingular K3 surfaces with σ0 ≤ 2 in odd characteristic.
(Shioda)
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Evidence

Corollary

For every odd prime p, there exists

I a supersingular K3 surface in characteristic p,

I which is unirational.



Formal groups arising from algebraic varieties

X proper over k

Artin and Mazur studied functor

Φi
X/k : (Art/k) → (Abelian groups)

S 7→ ker
(
H i

ét(X ×k S ,Gm) → H i
ét(X ,Gm)

)

Example (formal Picard group)

If i = 1, then
Φ1
X/k
∼= P̂icX/k .
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Formal Brauer group

Fact (Artin–Mazur)

Have tangent-obstruction theory for Φi
X/k :

tangent space: H i (X ,OX )
obstruction space: H i+1(X ,OX )

Corollary–Definition

For a K3 surface, Φ2
X/k is pro-representable by a

1-dimensional formal group law B̂rX/k over k ,
called the formal Brauer group.
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1-dimensional formal group laws

G = Spf k[[t]] a 1-dimensional formal group law over k,
k algebraically closed, char(k) = p > 0

multiplication µ : G × G → G
is given by f (x , y) ∈ k[[x , y ]]

G is determined by its height h(G )
multiplication by p : G → G

is given by g(t) ∈ k[[t]]

h(G ) :=

{
∞ if g(t) = 0

h if g(t) = tp
h

+ higher order terms.
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X supersingular K3 ⇒ X is unirational.
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Families of torsors

X → P1 an elliptic K3 surface with a section.

X ′ → P1 Weierstraß model
A ⊆ X identity component of Néron-model.

Want to classify families of A-torsors

X ⊇ A → A
↓ ↓ ↓
P1 = P1 → P1 × S

where

I S is spectrum of a local, complete, and Noetherian k-algebra
with residue field k .

I RHS is Cartesian.

I together with a degree N-multisection of A → P1 × S .
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Families of torsors

classified by Abelian group

ker
(
H1

ét(P1 × S , A)
res−→ H1

ét(P1, A)
)

[N]

Grothendieck–Leray spectral sequence for X ′
f−→ P1

E i ,j
2 := H i

ét(X
′, R j f∗Gm) ⇒ H i+j

ét (X ′, Gm)
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Families of torsors

Proposition

X → P1 elliptic K3 with section.

S spectrum of local, complete, and Noetherian k-algebra with
residue field k .

Then, families of A-torsors over S s.th. there exists degree-N
multisection are classified by

B̂rX (S) [N].
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Families of torsors

Corollary

Non-trivial families of A-torsors over S = Spec k[[t]]

can and do exist if and only if

I h(B̂rX ) =∞,

that is, X is supersingular, and

I p divides N.
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Families of torsors

Theorem

X → P1 supersingular K3 with elliptic fibration with section.
Then, there exists a smooth family of supersingular K3 surfaces

X → X
↓ ↓

Spec k → S = Spec k[[t]]

I have
0 → Pic(Xη) → Pic(X ) → Z/pZ → 0

In particular: non-trivial moduli.

I have inseparable isogenies

Xη 99K X ×k η 99K Xη

In particular: X unirational ⇔ Xη unirational.
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Artin invariant

Proposition–Definition (Artin)

Let X be a supersingular K3 surface in odd characteristic.

Then,
discNS(X ) = −p2σ0

for some integer σ0
1 ≤ σ0 ≤ 10,

called the Artin–invariant.
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This lattice is called the supersingular K3 lattice of Artin
invariant σ0.
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I There exists an elliptic fibration X → P1, possibly without
section.

I If σ0 ≤ 9, then there exists an elliptic fibration X → P1 with
section.



Artin invariant

Proposition

Let X be a supersingular K3 surface in odd characteristic.

I There exists an elliptic fibration X → P1, possibly without
section.

I If σ0 ≤ 9, then there exists an elliptic fibration X → P1 with
section.



Supersingular K3 crystals

X supersingular K3 surface over k

H := H2
cris(X/W )

I free W (k)-module of rank 22

I Frobenius ϕ : H → H

I Poincaré duality induces perfect pairing H × H →W (k)

I Tate–module

TH := {x ∈ H | x = ϕ(x)} ⊂ H

is free Zp-module of rank 22 with

discTH = −p2σ0 .
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I Poincaré duality induces perfect pairing H × H →W (k)

I Tate–module

TH := {x ∈ H | x = ϕ(x)} ⊂ H

is free Zp-module of rank 22 with

discTH = −p2σ0 .



Moduli of supersingular K3 crystals

Theorem (Ogus)

Let N be a supersingular K3 lattice with discN = −p2σ0 .

I There exists a moduli space MN for supersingular K3 crystals
(H, ϕ, 〈−,−〉) with N ⊂ TH .

I MN is irreducible, smooth and projective over Fp.



Moduli of supersingular K3 crystals

Theorem (Ogus)

Let N be a supersingular K3 lattice with discN = −p2σ0 .

I There exists a moduli space MN for supersingular K3 crystals
(H, ϕ, 〈−,−〉) with N ⊂ TH .

I MN is irreducible, smooth and projective over Fp.



Moduli of supersingular K3 crystals

Theorem (Ogus)

Let N be a supersingular K3 lattice with discN = −p2σ0 .

I There exists a moduli space MN for supersingular K3 crystals
(H, ϕ, 〈−,−〉) with N ⊂ TH .

I MN is irreducible, smooth and projective over Fp.



Ogus’ period map

N a supersingular K3 lattice.

SN moduli space of supersingular K3 surfaces X
with N ⊆ NS(X ).

MN moduli space of supersingular K3 crystals H
with N ⊂ TH .

Ogus’ period map
πN : SN → MN



Ogus’ period map

N a supersingular K3 lattice.

SN moduli space of supersingular K3 surfaces X
with N ⊆ NS(X ).

MN moduli space of supersingular K3 crystals H
with N ⊂ TH .

Ogus’ period map
πN : SN → MN



Ogus’ period map

N a supersingular K3 lattice.

SN moduli space of supersingular K3 surfaces X
with N ⊆ NS(X ).

MN moduli space of supersingular K3 crystals H
with N ⊂ TH .

Ogus’ period map
πN : SN → MN



Ogus’ crystalline Torelli theorem

Theorem (Ogus)

In characteristic p ≥ 5, there exists a period map

πN : SN → MN .

I πN is étale, but not of finite type

I for X ,Y supersingular K3 surfaces

X ∼= Y ⇔ H2
cris(X/W ) ∼= H2

cris(Y /W ).
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